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Nonlinear two-dimensional sail theory

Jean-Marc Vanden-Broeck®

Department of Mathematics, Stanford University, Stanford, California 94305
(Received 23 March 1981; accepted 5 January 1982)

Steady two-dimensional flow past a sail is considered. The sail is assumed to be supported by two masts. The
flow and the shape of the sail are determined as functions of the direction a of the flow at infinity and the
Weber number 4. The full nonlinear problem is formulated as an integrodifferential equation for the shape of
the sail. This equation is discretized and solved numerically by Newton’s method. Sail profiles, the slack in
the sail, and the lift coefficient are presented for various values of @ and 4 .

{. INTRODUCTION

We consider the deformation of a two-dimensional
sail due to the steady potential flow of an incompres-
sible inviscid fluid around it (see Fig. 1). The sail is
supported by two masts and is characterized by its
constant tension ¢ and by the distance c between the
two masts. The fluid has density p and velocity U at
infinity. As we shall see, the shape of the sail is de-
termined by the direction « of the flow at infinity and
by the Weber number

r=2pcU%0. (1)

This problem was first considered by Thwaites' and
Nielsen.! These authors obtained approximate solu-
tions for o small by using thin aerofoil theory. Their
work was further generalized by Tuck and Haselgrove®
and Dugan. More recently, Vanden-Broeck and Kel-
ler® obtained an asymptotic solution for » small for ar-
bitrary values of a.

In the present paper we solve the fully nonlinear
problem numerically. In Sec. II we formulate the prob-
lem as an integrodifferential equation for the unknown
shape of the sail. In Sec. III we present a method to
solve this equation numerically. The method involves
discretization, which converts the equation into a set
of nonlinear algebraic equations. Then it employed
Newton's method to solve these equations. The results
obtained are discussed in Sec. IV.

Many different families of solutions exist. Tuck and
Haselgrove’s® stability analysis shows that only one
family of solutions is stable for o small. Therefore,
we present only numerical results for this family. It
is found that for each value of o there is a maximum
value of the Weber number A above which this family
fails to exist.

Il. FORMULATION

Let us consider the steady two-dimensional flow of
an inviscid incompressible fluid past an inextensible
and flexible sail. The flow configuration, the sail, and
the coordinates are sketched in Fig. 1.

The leading edge or luff of the sail is attached to a
mast at x =0,y =0 and the trailing edge or leach is
attached to another mast at x =c,y =0. At infinity we
require that the flow have speed U and direction a.

We introduce dimensionless variables by taking ¢ as
the unit length and U as the unit velocity. Let the shape
of the sail be described in dimensionless variables by
y=F(x),0<x <1, The conditions of attachment to the
masts imply

F(0)=F(1)=0. 2)

The difference between the pressures on the two
sides of the sail is balanced by x(x)o, where « is the
curvature of the sail and ¢ is the constant tension in it.
By using Bernoulli’s equation we obtain, in dimension-
less variables

k(x}=(A/ g (¥ ) -q*(x)}]. (3)

Here, ¢*(x) and ¢°(x) are the flow velocities above and
below the sail, respectively. The parameter i is the
Weber number defined by (1).

It is convenient to introduce the complex perturba-
tion velocity

a-ib=u-cosa ~i(v-sina). (4)

Here, u and » denote, respectively, the chordwise and
normal components of the velocity. The function g -ib
is an analytic function of z =x +iy which vanishes at
infinity. Therefore, we can write, by using the Plem-
elj formula

ao(x) +a‘(x) _iibo(x) + b‘w)]= i J“ m{mﬂ:ﬁl{kﬂi‘mﬂwdxl . (5)
0

T

The integral in (5) is of the Cauchy principal value
form.

The velocity must be tangent to the sail on both sides.
Thus, we have

VPresent address: Department of Mathematics and the Mathe-
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(x, =x) +i[F(xy - F(x)]

—

vix)=u*x)F'(x), O<x=1l, (8)

Using the definition (4), we can rewrite (6) in the more
convenient form

b*(x) = b%(x) = [a*(x) ~a"(x}}F'(x), 7N
b*(x) + d7(x) =~28ina + [a°*(x) + a™(x) JF'(x)
+2coBaF’(x). (8)
0031-9171/82/030420-04$01.90 © 1882 American Institute of Physics 420
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FIG. 1. Computed profile of a sail with «=7/6,1=0.82, and
f=3.0. The unit length iny is c.

By substituting {7) into (5) and taking real and ima-~
ginary parts we obtain
bo(x) + b7(x)

_1 ‘Jg‘(x Y=aTx YL+ F(x )P Yx, —x)
T '( zx; —xY‘LJr [F(x,)-zf*(xﬁf deg,  (9)

a*(x) +a(x)

__1 f fa*te,) —ae )1 + P PIFGG) = Pl
m

We now rewrite (3) in the form

m%%’r]m +3 @) a1 + P2 cona

+a'(x)+a’(x)]=0. (11)
Finally, we impose the Kutta condition at x =1 by re~
quiring

a*(l)=a™(l). (12)
The condition (12) is clearly not satisfactory when
F'(x)~(1 ~x)" withvs-} asx=-1,.

However, such exceptional cases did not occur in the
numerical solution. We shall consider only values of
a between 0 and 7/2 so that the Kutta condition is im-
posed at the trailing edge.

For given values of A and a relations (8)-(12) define
a nonlinear system of integrodifferential equations for

the unknowns F(x), a*(x), a”(x), b*(x), and b7(x).
By substituting (7), (9), and (10) into (8) and (11) we

obtain the following reduced system of equations for
the two unknowns a*(x) -a~(x) and F(x):

=-2sina +2cos aF'(x), (13)

F*(x) AL, . , 1 (! [a*(x,) —a™(x )L + F/(x,P}[F(x,) - F(x) _
m;,—]gn + 2 [a*(x) ~a" ()1 + F (x)2]<2 cosa -~ 'E oy — %) ¥ [F(x;) - Fx) dxl) =0. (14)
I

Mo (% —2)* + |F(x)) ~F(x)}
(10)
- J
1 j‘ [+ F P at(x)) —a(x ) jxy = %) + F(x)[F(x,) - F(x) ]t
A (%, = x)* + [F(x,) -F(x)}
Thig system is solved numerically in the next section.
From the solution we can then compute the slack [
. in the sail by the formula
]
1= f {1+ [F R} 2ax -1, (15)
0
Following Thwaites' we define the parameter g by the
relation
B=sin2a/20!/?, (16)
The Lift coefficient is obtained from the solution by
substituting (7) into the formula (15) given by Vanden-
Broeck and Keller.® Thus, we obtain
1
C.=|2 l [a°(%) = a*(x) 1 + [F*(x)Plax | . )
11l. NUMERICAL ANALYSIS
In order to solve the system of equations defined by
(2), (12), (13), and (14) we introduce the mesh points
X={I-1)/(N~1), I=1,...,N, (18)
and the corresponding unknowns
Fi=F(x), I=},...,N, (19)
Af=a*(x;)~a"(x), I=2,...,N. (20)
Relations (2) and (12) imply F,=F, =0 and A}, =0, s0
that there are only 2N - 4 unknowns F; and A;.
We shall satisly Eqs. (13) and (14) at the N -3 inter-
L]
<
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it nscolumesligeseas. o o

mediate mesh points
Xpapp =% +%,,)/2, 1=2,...,N=-2. (21)

First, we compute F'(x;), F'(x;,1/2)s F*(X;,172), F(%0112)
and a*(x,,{/2) =a(x,,;/7) in terms of F, and A7 by four
point formulas,

Next, we evaluate the integrals in (18) and (14) by
using the trapezoidal rule with the mesh points x,.
The mesh points x, are locally symmetric about x,,,,,
and the quadrature formula is also symmetric.
Therefore, the contribution from the neighborhood of
the singularity cancels out, permitting us to evaluate
the Cauchy principal value as if it were an ordinary
integral.

In doing so it is important to notice that the inte-
grands in (13) and (14) behave like x*'/? ag x - 0. We
handle these singularities by subtracting the singular
part before integrating numerically. We then integrate
the singular part analytically.

By discretizing (13) and (14) we obtain 2N - 6 nonlin-
ear algebraic equations for the 2N - 4 unknowns F, and
A;. An extra equation is obtained by imposing the Kutta
condition at x =1 via the relation

lin‘l (1-2)"%a(x) -a"(x)]=0. (22)
Zw
A three-point Lagrange extrapolation formula is used

to evaluate the limit in terms of A;. The last equation
is obtained by imposing (2) by means of a three-point

Jesn-Marc Vanden-Brosck 421
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FIG. 2. Computed profiles of a sail with o =7/4 of A=0.5, FIG. 4. Values of the Lift coefficient C, as a function of 8 for
0.8, and 1,0. The corresponding values of 8 are, respectively: @=y/4, The dashed curve corresponds to Vanden-Broeck and
6, 2.8, and 1.6. The unit length in which both x and y are Keller’s asymptotic formula
- measured is c. :
i using a neighboring solution as a starting guess.
Lagrange formula.
s . . ) Among all these possible solutions, only one is * rea-
i o ¢ For given values of x and a this system of equations sonable” in the sense that it has a simple unimodal
- . ?
3 is solved by Newton’s method. The values of 8 andC shape cambered to lee of the wind. Tuck and Hasel-
can then be computed by quadrature from (16) and (17). grove’s® stability analysis shows that this family of
3 -, solutions is the only stable one for o« small. There-
1 : V. DISCUSSION OF THE RESULTS fore, we extend only this family to the nonlinear case.
We have used the method described in Sec. III to Typical profiles are shown in Figs. 1 and 2. The val-
- compute solutions for various values of » and . Many ues of 8 and C for o =1/4 are shown as functions of )
- different families of solutions exist. They have been in Figs. 3 and 4. The broken lines correspond to the
; studied for a small by Thwaites.! These families can asymptotic formulas (14) and (20) given by Vanden-
be computed for arbitrary o and ) in the following way. Broeck and Keller.® The asymptotic formula for 3
For a given value of » we compute the solution for a agrees with the numerical results within fifteen percent
. small value of @ by using the uniform stream (i.e., the for 2 < 0.3.
solution corresponding to a =0) as the initial guess. )
Provided that A is not close to any of the critical valves In Fig. 5 we present the values of x vs g for a =ﬂ(100’
- described by Thwaites,' the numerical scheme conver- and @ =7/10. The broken line corresponds to Thwaites
ges rapidly to his solution for the given value of A. solu.tmn. It shows that h}s .solutxon is a good approxi-
Once a given solution has been obtained, however, a mation for a small, but it is not uniform as g tends to
type of “boot-strap’ technique is employed, that is, a zero. The d*screpanc.y bgtween his sol}mon and the
converged solution for one value of \ is used as the ini-  €xact numerical solution increases rapidly as g gets
tial guess for a solution with  altered by a few percent. ~ close to zero. In the particular case =1, the values
Similarly, for fixed x, the angle o could be varied of C, were computed for various values of «. The nu-
merical values of C, were found to agree with Thwaites’
solution within 5% for a < 7/18, 20% for a < /6, and
30% for a< /4.
A
1.04 1
2.3%
]
o8/
3 i . 8
s 10 15 4 8
FIG. 3. Values of the Weber number A as a function of § for FIG. 5. Values of the Weber Number A as a function of g for
v =7/4, The dashed curve corresponds to Vanden-Broeck and a=7/100 (curve a) and @ =7 /10 {curve b). The dashed curve
Keller’s asymptotic for mula. corresponds to Thwaites calculations,
‘s
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Figures 3 and 5 and similar results obtained for dif-
ferent values of a indicate that for each value of o
there exists a maximum value )y(a) of the Weber num-
ber above which there is no solution of the kind con-
sidered here. For a given value of a there are two
solutions for each value of the Weber number in an
interval below the maximum value. This nonuniqueness
is likely to be of mathematical interest only. The rea-
son for this is that the branch on the left of the maxi-
mum is probably unstable. After all, it corresponds to
an increase of the tension arising from an increase in
the slack. This suggests that the physically realizable
solutions corresponds to A > xg(a).

As a increases, the slope of the profile increases at
the leading edge. This was found to limit the accuracy
of the numerical scheme. Accurate solutions for a
> 1/3 and x ~xy(a) could not be computed with N < 35.

Finally, it is worthwhile mentioning that the present
model i8 not physical for « large since separation is

Phys. Fluids, Vol, 25, No. 3, March 1982

then likely to occur. A more realistic model for a
large was proposed by Dugan.*
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